814 research outputs found

    Electroweak and Flavor Physics in Extensions of the Standard Model with Large Extra Dimensions

    Get PDF
    We study the implications of extra dimensions of size R∼1/TeVR\sim 1/TeV on electroweak and flavor physics due to the presence of Kaluza-Klein excitations of the SM gauge-bosons. We consider several scenarios with the SM fermions either living in the bulk or being localized at different points of an extra dimension. Global fits to electroweak observables provide lower bounds on 1/R, which are generically in the 2-5 TeV range. We find, however, certain models where the fit to electroweak observables is better than in the SM, because of an improvement in the prediction to the weak charge Q_W. We also consider the case of softly-broken supersymmetric theories and we find new non-decoupling effects that put new constraints on 1/R. If quarks of different families live in different points of the extra dimension, we find that the Kaluza-Klein modes of the SM gluons generate (at tree level) dangerous flavor and CP-violating interactions. The lower bounds on 1/R can increase in this case up to 5000 TeV, disfavoring these scenarios in the context of TeV-strings.Comment: 21 pages, 3 figures, Late

    The μ\mu-Problem in Theories with Gauge-Mediated Supersymmetry Breaking

    Full text link
    We point out that the μ\mu-problem in theories in which supersymmetry breaking is communicated to the observable sector by gauge interactions is more severe than the one encountered in the conventional gravity-mediated scenarios. The difficulty is that once μ\mu is generated by a one-loop diagram, then usually \bmu is also generated at the same loop order. This leads to the problematic relation \bmu \sim \mu \Lambda, where Λ∼\Lambda \sim 10--100 TeV is the effective supersymmetry-breaking scale. We present a class of theories for which this problem is naturally solved. Here, without any fine tuning among parameters, μ\mu is generated at one loop, while \bmu arises only at the two-loop level. This mechanism can naturally lead to an interpretation of the Higgs doublets as pseudo-Goldstone bosons of an approximate global symmetry.Comment: 18 pages, 2 figure

    Non-supersymmetric extensions of the SM

    Get PDF
    We discuss the implications of having the Higgs particle arising as a composite pseudo-Goldstone boson, either from a new strong interacting sector at the TeV, or from the 5th-component of a gauge field in extra dimensional models

    One-loop non-renormalization results in EFTs

    Full text link
    In Effective Field Theories (EFTs) with higher-dimensional operators many anomalous dimensions vanish at the one-loop level for no apparent reason. With the use of supersymmetry, and a classification of the operators according to their embedding in super-operators, we are able to show why many of these anomalous dimensions are zero. The key observation is that one-loop contributions from superpartners trivially vanish in many cases under consideration, making supersymmetry a powerful tool even for non-supersymmetric models. We show this in detail in a simple U(1) model with a scalar and fermions, and explain how to extend this to SM EFTs and the QCD Chiral Langrangian. This provides an understanding of why most "current-current" operators do not renormalize "loop" operators at the one-loop level, and allows to find the few exceptions to this ubiquitous rule.Comment: Corrections made in Sec. 3.2 and Fig.

    The Strongly-Interacting Light Higgs

    Get PDF
    We develop a simple description of models where electroweak symmetry breaking is triggered by a light composite Higgs, which emerges from a strongly-interacting sector as a pseudo-Goldstone boson. Two parameters broadly characterize these models: m_rho, the mass scale of the new resonances and g_rho, their coupling. An effective low-energy Lagrangian approach proves to be useful for LHC and ILC phenomenology below the scale m_rho. We identify two classes of operators: those that are genuinely sensitive to the new strong force and those that are sensitive to the spectrum of the resonances only. Phenomenological prospects for the LHC and the ILC include the study of high-energy longitudinal vector boson scattering, strong double-Higgs production and anomalous Higgs couplings. We finally discuss the possibility that the top quark could also be a composite object of the strong sector.Comment: 45 pages, 1 figure. v2: references adde

    Renormalization of dimension-six operators relevant for the Higgs decays h→γγ,γZh\rightarrow \gamma\gamma,\gamma Z

    Full text link
    The discovery of the Higgs boson has opened a new window to test the SM through the measurements of its couplings. Of particular interest is the measured Higgs coupling to photons which arises in the SM at the one-loop level, and can then be significantly affected by new physics. We calculate the one-loop renormalization of the dimension-six operators relevant for h→γγ,γZh\rightarrow \gamma\gamma, \gamma Z, which can be potentially important since it could, in principle, give log-enhanced contributions from operator mixing. We find however that there is no mixing from any current-current operator that could lead to this log-enhanced effect. We show how the right choice of operator basis can make this calculation simple. We then conclude that h→γγ,γZh\rightarrow \gamma\gamma, \gamma Z can only be affected by RG mixing from operators whose Wilson coefficients are expected to be of one-loop size, among them fermion dipole-moment operators which we have also included.Comment: 21 pages. Improved version with h -> gamma Z results added and structure of anomalous-dimension matrix determined further. Conclusions unchange
    • …
    corecore